
Computer-Assisted Language Comparison in Practice

Tutorials on Computational Approaches to the History and Diversity of Languages

Computer-Assisted Language Comparison in Practice
Volume 7, Number 1
URL: https://calc.hypotheses.org/6959 DOI: 10.15475/calcip.2024.1.3
Published under a Creative Commons Attributions 4.0 LICENSE
Published on 25/03/2024

A New Python Libraryfor the Manipulationand Annotation ofLinguistic Sequences
Robert Forkel¹ and Johann-Mattis List¹²
¹ DLCE. Max Planck Institute for Evolutionary Anthropology, Leipzig
² Chair of Multilingual Computational Linguistics, University of Passau, Passau

The Python package linse (https://pypi.org/project/linse) offers various methods for the
manipulation and annotation of sequences. In this short overview, we summarize its major
functionalities and provide some information on its background and how we intend to
develop it further in the future.

1 Introduction

Many tasks that need to be routinely carried out in computational linguistics in general
and computational historical linguistics in specific deal with the manipulation and
annotation of linguistic sequences. Since many structures in linguistics can be modeled
as sequences, there are quite a few computational tasks of relevance, but few libraries
are available that would offer reference implementations of major tasks. With the linse
package (Forkel and List 2024, Version 0.1, https://pypi.org/project/linse), that was
published a couple of weeks ago, we are trying to make a first step towards such a library.

2 Background

The linse package grew out of the desire to make it easier to maintain the large amount
of different modules in the LingPy library (List and Forkel 202a3, Version 2.6.13,
https://pypi.org/project/lingpy). Over the last years, LingPy has assembled several
methods for sequence manipulation and annotation that were in part poorly tested and
had become difficult to maintain. As part of a general plan to try to cut down LingPy's
functionality to a core, focusing on sequence comparison and automated cognate
detection, we had already stopped to develop LingPy's methods further. Our plan was to
successively cut out useful methods and routines from LingPy's codebase in order to put

https://doi.org/10.15475/calcip.2024.1.3
https://calc.hypotheses.org/6959
https://pypi.org/project/linse
https://pypi.org/project/linse
https://pypi.org/project/linse
https://digling.org/evobib/?bibtex=LingPy
https://pypi.org/project/lingpy

CALCiP Volume 7, Number 1

18

them in dedicated libraries, using newly established libraries also for the publication of
newly developed methods. The major goals behind this strategy were to increase test
coverage, to reduce dependencies for smaller packages, and to offer the possibility to
use functionality that was so far only available in LingPy without having to install the full
package.

The strategy to redistribute certain parts of LingPy's methods in dedicated smaller
packages with fewer dependencies is reflected in the PyloCluster package (List and
Forkel 2021, https://pypi.org/project/pylocluster), offering LingPy's basic
implementations of the UPGMA (Sokal and Michener 1958) and the Neighbor-joining
algorithms (Saitou and Nei 1987) for distance-based phylogenetic reconstruction. The
strategy to publish new methods in a new package with a clearer structure and goal is
reflected in the LingRex package (List and Forkel 2023b, Version 1.4.1,
https://pypi.org/project/lingrex), which offers many methods that have been developed
recently (compare, for example, List et al. 2023) and often includes original test cases
from the papers in which the new methods were introduced.

While PyloCluster allows users to make use of the UPGMA and the Neighbor-joining
algorithm without having to install LingPy with its long tail of dependencies, we
originally wanted linse to provide lightweight access to the major routines for sequence
manipulation and annotation that were hidden inside LingPy. When starting to work on
the package, however, we realized that there were additional sequence manipulation
methods that we had started to use in the context of different projects (such as Lexibank,
List et al. 2022 and CLTS, List et al. 2021, Version 2.1.0, https://clts.clld.org), and we
decided to include these as well, to provide a package dedicated to sequences in cross-
linguistic approaches to historical and typological language comparison.

3 Basic Structure of the Package

In its current form, linse assembles methods and functions for the manipulation and
annotation os linguistic sequences across four major modules. The segment module
offers methods to segment a raw string into a sequence (including methods to tokenize
strings transcribed in IPA or to convert strings in SAMPA to IPA).

The subsequence module offers basic routines to compute all possible prefixes,
suffixes, affixes, and substrings from a sequence (these routines are important for the
computation of partial colexifications as described in List 2023).

The annotate module offers basic methods for the annotation of sequences, which we
understand as any method that takes a sequence as input and returns a sequence of the
same length, containing annotations for each segment of the original sequence. Here,
users find methods to convert segmented phonetic transcriptions into various sound class
systems (including the system by Dolgopolsky 1964 and the ASJP code by Holman et al.

https://digling.org/evobib/?bibtex=PyloCluster
https://pypi.org/project/pylocluster
https://digling.org/evobib/?bibtex=PyloCluster
https://digling.org/evobib/?bibtex=Sokal1958
https://digling.org/evobib/?bibtex=Saitou1987
https://digling.org/evobib/?bibtex=LingRex
https://pypi.org/project/lingrex
https://digling.org/evobib/?bibtex=List2023c
https://clts.clld.org/
https://digling.org/evobib/?bibtex=CLTS
https://digling.org/evobib/?bibtex=List2022e
https://digling.org/evobib/?bibtex=List2023a
https://digling.org/evobib/?bibtex=Holman2011
https://digling.org/evobib/?bibtex=Dolgopolsky1964

Forkel and List LinSe

19

2011), including now also direct access to the standardized version of the IPA proposed
by the CLTS project (see Anderson et al. 2018 and Anderson et al. 2023).

The transform module offers some functions to transform one sequence into another
sequence, including a reference implementation for the idea to manipulate sequences
with the help of conversion tables. The idea to manipulate sequences with the help of
conversion tables was originally proposed in the context of orthography profiles (Moran
and Cysouw 2018), but has now been expanded to allow for any kind of transformation
and manipulation of sequences (List 2023), including, for example, the grouping of
sounds into evolving units (List et al. 2024).

Additional modules of the package provide helper functions and new data types that
are useful in the context of sequence manipulation and annotation. The models module
provides access to the sound class models in LingPy (originally proposed in List 2014),
the profile module provides routines that can be used to create an initial draft
orthography profile from a list of strings in phonetic transcription that can later be used
to segment and successively convert the data to some standardized version of the IPA
and has proven useful in the creation of the Lexibank repository (List et al. 2022). The
typedsequence module provides a set of clearly defined and in part nested sequence types
for linguistic analysis, starting from a segment, consisting of one and more characters,
followed by a morpheme, consisting of one and more segments, and a word, consisting
of one and more morphemes, up to a phrase consisting of one and more words. These
types are useful and important for the internal representation of linguistic sequences in
various methods, including, for example, partial cognate detection (List et al. 2016) or
interlinear-glossed text (Forkel 2023).

An important feature of linse is furthermore that it provides direct access to most of
the data underlying the CLTS project. This means that users can convert sequences in
phonetic transcription to the feature system underlying CLTS without having use the
pyclts package (List et al. 2024, Version 3.2.0, https://pypi.org/project/pyclts) in
combination with the CLTS data (which turned out to be difficult for some users in the
past). Since linse includes the most recent version of CLTS in its static form (for the
generation of unseen IPA segments, one must still use pyclts along with the CLTS data),
installing linse (which has no additional requirements) offers fast access to the
standardized IPA version and the feature system offered by CLTS.

4 Examples

In the following, we will provide a couple of examples that show how the linse library
can be used in practice. Since the library itself does not have any dependencies, all you
need to run it is a Python installation with Python 3.8 and higher (https://python.org). To
install the library, you best use the Python package manager pip.

https://digling.org/evobib/?bibtex=Holman2011
https://digling.org/evobib/?bibtex=Anderson2023a
https://digling.org/evobib/?bibtex=Anderson2018
https://digling.org/evobib/?bibtex=Moran2018
https://digling.org/evobib/?bibtex=Moran2018
https://digling.org/evobib/?bibtex=List2023TBLOG09
https://digling.org/evobib/?bibtex=List2024PREPRINTb
https://digling.org/evobib/?bibtex=List2014d
https://digling.org/evobib/?bibtex=List2022e
https://digling.org/evobib/?bibtex=List2016g
https://digling.org/evobib/?bibtex=PyIGT
https://pypi.org/project/pyclts
https://digling.org/evobib/?bibtex=PyCLTS
https://python.org/

CALCiP Volume 7, Number 1

20

$ pip install linse
Alternatively, you can also download the data from the GIT repository hosted on

GitHub (https://github.com/lingpy/linse) and install the package from there.
Having installed linse, you can test the four basic modules in interactive Python sessions.
Thus, you can first convert a sequence from SAMPA to IPA and then segment it into
distinctive sounds.

>>> from linse.segment import ipa, sampa2ipa>>> ipa_string = "".join(sampa2ipa("t_hOxt@R"))>>> segmented_ipa = ipa(ipa_string)>>> print (ipa_string, ">", " ".join(segmented_ipa))tʰɔxtəʁ > tʰ ɔ x t ə ʁ
If you want to generate all possible substrings of a given input sequence (note that
substring is a specific term that refers to consecutive subsequence where no characters
inside a sequence have been left out, see []), you can use the substring method from the
subsequence module.

>>> from linse.subsequence import substrings>>> substrings("abcd")['abcd', 'abc', 'bcd', 'ab', 'bc', 'cd', 'a', 'b', 'c', 'd']
To convert your segmented IPA sequences to sound classes or to the feature names used
in CLTS, you can use the annotate module.

>>> from linse.annotate import soundclass, clts>>> classes = soundclass(segmented_ipa, "asjp")>>> features = clts(segmented_ipa)>>> for a, b, c in zip(segmented_ipa, classes, features):... print("{0:2}".format(a), ">", b, ">", c)tʰ > t > aspirated voiceless alveolar stop consonant
ɔ > o > rounded open-mid back vowelx > x > voiceless velar fricative consonantt > t > voiceless alveolar stop consonant
ə > I > unrounded mid central vowel
ʁ > G > voiced uvular fricative consonant

https://github.com/lingpy/linse

Forkel and List LinSe

21

To transform a sequence into another sequence in a very flexible manner using
conversion tables, you can use the transform module and the SegmentGrouper class. In
order to do so, you should first define a conversion table, which you can then load into
the SegmentGrouper class and apply directly to any string representation of a sequence
that you want.

>>> from linse.transform import SegmentGrouper>>> table = [["Sequence", "IPA"], ["th", "tʰ"], ["@", "ə"], ["an", "ã"]]>>> sg = SegmentGrouper.from_table(table)>>> sg("th@tan", column="IPA")['tʰ', 'ə', '«t»', 'a ̃']
As you can see from the output, the segment t was not defined in the table. As a result,
it is marked specificaly by putting it into the specific quotation marks. While this
example looks very much like a typical use case of an orthography profile, the conversion
tables in linse can contain any symbol, since we explicitly removed any further semantics
that would restrict their use to specific use cases. This means specifically, that the space
symbol is just one symbol among many, while space is the major unit indicating
segmentation in orthography profiles. This means, one can essentially use conversion
tables for the regrouping of previous segmentations.

>>> table = [["Sequence", "ReGroup"], ["t h", "t.h"], ["a n", "a.n"], [" ", "NULL"]]>>> sg = SegmentGrouper.from_table(table)>>> [segment for segment in sg("t h a n", column="ReGroup") if segment !="NULL"]['t.h', 'a.n']

5 Outlook

The linse package is a small software library with a very specific application range.
Specifically because it is small and lightweight, however, we hope that it will prove useful
for our colleagues who need methods for sequence manipulation in their work. In the
future, we hope to test the package further and to expand its application range to include
some more basic methods and algorithms that prove useful in our work. At the moment,
there are no concrete plans on concrete methods, but we are quite convinced that the
version 0.1 in which we have published the linse package by now, won't be the last
version of the library.

CALCiP Volume 7, Number 1

22

References

Anderson, Cormac and Tresoldi, Tiago and Chacon, Thiago Costa and Fehn, Anne-Maria and Walworth, Mary and Forkel,
Robert and List, Johann-Mattis (2018): A Cross-Linguistic Database of Phonetic Transcription Systems. Yearbook of
the Poznań Linguistic Meeting 4.1. 21-53. https://doi.org/10.2478/yplm-2018-0002

Anderson, Cormac and Tresoldi, Tiago and Greenhill, Simon J. and Forkel, Robert and Gray, Russell D. and List, Johann-
Mattis (2023): Variation in phoneme inventories: quantifying the problem and improving comparability. Journal of
Language Evolution. 1-20. https://doi.org/10.1093/jole/lzad011

Dolgopolsky, Aron B. (1964): Gipoteza drevnejšego rodstva jazykovych semej Severnoj Evrazii s verojatnostej točky
zrenija [A probabilistic hypothesis concering the oldest relationships among the language families of Northern Eurasia].
Voprosy Jazykoznanija 2. 53-63.

Forkel, Robert (2023): PyIGT: Handling interlinear glossed text with Python [Software Library, Version 2.1.0]. Leipzig:Max
Planck Institute for Evolutionary Anthropology. https://pypi.org/project/pyigt

Holman, Eric. W. and Brown, Cecil H. and Wichmann, Søren and Müller, André and Velupillai, Viveka and Hammarström,
Harald and Sauppe, Sebastian and Jung, Hagen and Bakker, Dik and Brown, Pamela and Belyaev, Oleg and Urban,
Matthias andMailhammer, Robert and List, Johann-Mattis and Egorov, Dimitry (2011): Automated dating of the world’s
language families based on lexical similarity. Current Anthropology 52.6. 841-875.

List, Johann-Mattis (2014): Sequence comparison in historical linguistics. Düsseldorf:Düsseldorf University Press.
https://doi.org/10.1515/9783110720082

List, Johann-Mattis (2023): Inference of partial colexifications from multilingual wordlists. Frontiers in Psychology
14.1156540. 1-10. https://doi.org/10.3389/fpsyg.2023.1156540

List, Johann-Mattis (2023): Sequence Manipulation with Orthography Profiles in JavaScript. Computer-Assisted Language
Comparison in Practice 6.2. 65–72. https://doi.org/10.15475/calcip.2023.2.3

List, Johann-Mattis and Anderson, Cormac and Tresoldi, Tiago and Forkel, Robert (2021): Cross-Linguistic Transcription
Systems [Dataset, Version 2.1.0]. Jena:Max Planck Institute for the Science of Human History. https://clts.clld.org

List, Johann-Mattis and Anderson, Cormac and Tresoldi, Tiago and Forkel, Robert (2024): PyCLTS. A Python library for
the handling of phonetic transcription systems [Software Library, Version 3.2.0]. Leipzig:Max Planck Institute for
Evolutionary Anthropology. https://pypi.org/project/pyclts

List, Johann-Mattis and Forkel, Robert (2021): PyloCluster. Basic functionalities for distance-based clustering procedures
in Python [Software Library, Version 0.1.0]. Leipzig:Max Planck Institute for Evolutionary Anthropology.
https://pypi.org/project/pylocluster

List, Johann-Mattis and Forkel, Robert (2023): LingPy. A Python library for quantitative tasks in historical linguistics
[Software Library, Version 2.6.13]. Passau: MCL Chair at the University of Passau. https://pypi.org/project/lingpy

Johann-Mattis List and Forkel, Robert (2023): LingRex: Linguistic reconstruction with LingPy [Software Library, Version
1.4.1] . Leipzig: Max Planck Institute for Evolutionary Anthropology. https://pypi.org/project/lingrex

Johann-Mattis List and Forkel, Robert (2023): LinSe: Manipulation and annotation of linguistic sequences [Software
Library, Version 0.1.0] . Leipzig: Max Planck Institute for Evolutionary Anthropology. https://pypi.org/project/linse

List, Johann-Mattis and Forkel, Robert and Greenhill, Simon J. and Rzymski, Christoph and Englisch, Johannes and Gray,
Russell D. (2022): Lexibank, A public repository of standardized wordlists with computed phonological and lexical
features. Scientific Data 9.316. 1-31. https://doi.org/10.1038/s41597-022-01432-0

List, Johann-Mattis and Hill, Nathan W. and Forkel, Robert and Blum, Frederic (2023): Representing and computing
uncertainty in phonological reconstruction. In: Proceedings of the 4th Workshop on Computational Approaches to
Historical Language Change. Singapur: 22-32.

https://doi.org/10.2478/yplm-2018-0002
https://doi.org/10.1093/jole/lzad011
https://pypi.org/project/pyigt
https://doi.org/10.1515/9783110720082
https://doi.org/10.3389/fpsyg.2023.1156540
https://doi.org/10.15475/calcip.2023.2.3
https://clts.clld.org/
https://pypi.org/project/pyclts
https://pypi.org/project/pylocluster
https://pypi.org/project/lingpy
https://pypi.org/project/lingrex
https://pypi.org/project/linse
https://doi.org/10.1038/s41597-022-01432-0

Forkel and List LinSe

23

List, Johann-Mattis and Hill, Nathan W. and Blum, Frederic and Juárez, Cristian (2024): Grouping sounds into evolving
units for the purpose of historical language comparison. Open Research Europe 4.34. 1-8. [Preprint, under review, not
peer-reviewed] https://doi.org/10.12688/openreseurope.16839.1

List, Johann-Mattis and Lopez, Philippe and Bapteste, Eric (2016): Using sequence similarity networks to identify partial
cognates in multilingual wordlists. In: Proceedings of the Association of Computational Linguistics 2016 (Volume 2:
Short Papers). Association of Computational Linguistics 599-605.

Moran, Steven and Cysouw, Michael (2018): The Unicode Cookbook for Linguists: Managing writing systems using
orthography profiles. Berlin:Language Science Press.

Saitou, N. and Nei, M. (1987): The neighbor-joining method: A new method for reconstructing phylogenetic trees.
Molecular Biology and Evolution 4.4. 406-425.

Sokal, Robert. R. and Michener, Charles. D. (1958): A statistical method for evaluating systematic relationships. University
of Kansas Scientific Bulletin 28. 1409-1438.

Supplementary Material
Data and code can be found at https://pypi.org/project/linse
Funding Information
This project has received funding from the European Research Council (ERC) under the European Union's Horizon Europe
research and innovation programme (Grant agreement No. 101044282). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

https://doi.org/10.12688/openreseurope.16839.1
https://pypi.org/project/linse
https://doi.org/10.3030/101044282

