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The recently published Python library soundvectors offers a simple and robust method to
derive phonological feature vectors for any valid IPA sound via its canonical description.
It is designed to interact neatly with the Cross-Linguistic Transcription Systems reference
catalog (CLTS), which dynamically parses valid strings in phonetic transcription to describe
speech sounds. This study illustrates how both systems can be used together to generate
phonological feature vectors for all kinds of sounds without relying on a previously defined
lookup table. Additionally, it compares the generated feature vectors with those obtained
from two other prominent databases, PanPhon and PHOIBLE, showing how those systems
can be accessed from the CLTS data via its Python API pyclts.

1 Introduction

Phonological features are a core concept in phonology, and they are probably taught in
virtually every introduction to phonology. The idea is simple, yet powerful: Sounds have
certain acoustic and articulatory properties and can be represented as the combination of
these. Features are basically a binary notion of those properties, allowing for only two
values, present (+) or absent (-). This logically dissects sound inventories into natural
classes: [m] is related to [n] and [ŋ] as they are all [+nasal], it shares the [+lab] feature
with sounds like [p] or [f], while the [+son] feature bundles it together with other
sonorants like [l] or [r].

Features thus allow us to assess the dimensions among which certain sounds are similar
or dissimilar to each other. This has made them a popular choice for handling phonetic
transcriptions in computational models. It gives them access to properties of and
relationships between sounds that goes beyond simply checking for equivalence. As an
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example, consider the sounds [p] and [pʰ]. A human linguist instantly sees two very
similar sounds, they might even be slightly different transcriptions for the exactly same
sound. A computer, however, only "sees" two different strings -- [p] would therefore be
represented as equivalently (dis-)similar to [pʰ] as to [a]. Representing sounds in terms
of their features, however, gives the computer access to the information that some sounds
are much more similar to each other than others.

Due to their simplicity and efficiency, features have been successfully applied to
enhance computational models for linguistic research and natural language processing
alike. The former includes questions in historical language comparison (Kondrak 2000),
dialectology (Nerbonne and Heeringa 1997), phonological rule induction (Gildea and
Jurafsky 1996), and child language acquisition (Somers 1998). The latter is mainly
concerned with speech synthesis (Lux and Vu 2022; Staib et al. 2020) and recognition
(Metze 2007). Transliteration and named entity recognition tasks have furthermore
shown that features are very useful in transfer learning settings, where knowledge from
a high-resource language is applied to a low-resource language (Mortensen et al. 2016).

Due to the broad applicability of features and the constantly increasing amount of
machine-readable (cross-)linguistic data, several catalogues have been published that
offer feature representations for a large collection of sounds. The most popular feature
catalogue in computational linguistics is PanPhon (Mortensen et al. 2016,
https://pypi.org/project/panphon/), which covers approximately 5,000 sounds and has
been used for several NLP applications. Another well-known catalogue - albeit less for
the mere feature representations - is PHOIBLE (Moran and McCloy 2019,
https://phoible.org), a database for phoneme inventories across the world's languages.
PHOIBLE's current version (2.0) covers roughly 3,000 sounds and assigns feature
representations to all of them.

In the following, I will briefly outline SoundVectors (Rubehn et al. 2024,
https://pypi.org/project/soundvectors), our recently published tool for generating
phonological feature vectors. Thereafter I will provide some code examples on how to
use the Python library, and ultimately draw a comparison to PanPhon and PHOIBLE.

2 The SoundVectors Library

At first glance, SoundVectors might seem to be yet another library for translating sounds
into phonological features. However, there is one crucial aspect that it introduces: It is
generative. Other tools (like the ones mentioned above) are closed systems, in that they
define feature representations for a fixed-size set of sounds. When queried, they simply
look up if there is a feature representation for the queried sound and return it.
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However, experience in working with cross-linguistic data shows that new, unobserved
sounds are frequently encountered with increasing amounts of data (Moran 2012). In
many cases, there are just many different ways to write the same sounds: [pʰʷʲ], [pʰʲʷ],
and [pʲʷʰ] obviously mean the same thing, but they are different strings that would all
need to be accounted for by a closed system. The human linguist, in contrast, does not
see such a complex string as one, inseparable unit, but interprets the base sound and the
indicated coarticulations independently.

The generative process behind SoundVectors essentially emulates the logic that human
linguists apply to come up with feature representations for sounds. We know that a stop
is defined as [-cont, -son], or that all vowels are [-cons]. Therefore, SoundVectors
generates feature vectors directly from the descriptors of a sound (e.g. "stop", "alveolar",
"mid-open"). The system therefore requires the sound to already come in its canonical
IPA description. The recommended workflow for that is to use the Cross-Linguistic
Transcription System (CLTS; https://clts.clld.org, List et al. 2024), which I describe in
the following section, but it can be used in combination with other transcription systems
as well.

3 Using SoundVectors with CLTS

I proceed by briefly illustrating how to use soundvectors in harmony with CLTS. As with
all Python projects, it is recommendable to use a fresh virtual environment to avoid nasty
dependency clashes. Then, all we need to do is install soundvectors and pyclts via pip:

$ pip install soundvectors
$ pip install pycldf

Note that pyclts also requires you to have a local copy of the CLTS data on your
machine. In case you are unfamiliar with the process, please check its README for
detailed instructions.

Beyond these two packages, no further dependencies are required for obtaining
feature vectors. Therefore, after successfully installing both packages, we are ready to
go. Import the core classes as follows:

from soundvectors import SoundVectors
from pyclts import CLTS

The CLTS class contains all kinds of data and information about different transcription
systems, as well as a dynamic parsing algorithm (which is the crucial functionality for
our purposes). We are only interested in IPA transcriptions, so we "extract" the bipa
(standing for 'broad ipa') transcription system from the CLTS object:

https://clts.clld.org
https://github.com/cldf-clts/pyclts
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# set up CLTS object and extract the bipa transcription system
bipa = CLTS().bipa

# query bipa
bipa["t"] # returns <pyclts.models.Consonant: voiceless alveolar stop
consonant>

As illustrated above, this bipa object can now be used to query IPA sounds - it tells us
that the string "t" denotes the voiceless alveolar stop consonant. This piece of
information is crucial for SoundVectors, since it internally maps descriptors (like
voiceless or stop) onto phonological feature representations.

Luckily, you won't need to worry about that, since SoundVectors takes care of that
under the hood. All you have to do is pass bipa as your transcription system of choice
when constructing the SoundVectors object:

sv = SoundVectors(ts=bipa)

Now you can easily query sv and it will generate a feature vector for any sound which
is presented in valid IPA notation. Indexing the object will return you a FeatureBundle
object, which offers several representations of the generated feature vector:

feature_bundle = sv["t"]

feature_bundle.cons
> 1

feature_bundle.as_set()
> frozenset({'-son', '-distr', '-cont', '-lab', '-lo', '-long', '+front',
'-laryngeal', '-syl', '-delrel', '-voi', '-round', '+cons', '-velaric',
'-dorsal', '-back', '-nas', '-pharyngeal', '+ant', '+cor', '-cg', '-sg',
'-lat', '-hi'})

str(feature_bundle)
> '+cons,-syl,-son,-cont,-delrel,-lat,-nas,-voi,-sg,-cg,-pharyngeal,-
laryngeal,+cor,-dorsal,-lab,-hi,-lo,-back,+front,0_tense,-round,-
velaric,-long,+ant,-
distr,0_strid,0_hitone,0_hireg,0_loreg,0_rising,0_falling,0_contour,0_bac
kshift,0_frontshift,0_opening,0_closing,0_centering,0_longdistance,0_seco
ndrounded'

feature_bundle.as_vector()
> (1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1,
1, 0, -1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0)

In essence, the FeatureBundle object allows you to switch between all kinds of
representation, ranging from purely numeric vector representations to verbose, human-
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readable string representations. Since the vector representation is arguably the most
useful for downstream tasks, there is also a shorthand method to directly obtain the
vector from sv:

sv.get_vec("t")
> (1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1,
1, 0, -1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Finally, tokenized forms in cross-linguistic data are often represented as lists of
tokens, e.g. ["n", "aɪ", "s"]. For this common case, SoundVectors offers a convenience
method to generate feature vectors for a batch of sounds at once:

word = ["n", "aɪ", "s"]

sv(word)
> [
(1, -1, 1, ..., 0),
(-1, 1, 1, ..., -1),
(1, -1, -1, ..., 0)

]

4 Comparison With Other Feature Systems

I proceed by briefly showcasing how other catalogues can be accessed from within CLTS
in order to compare them to SoundVectors. More precisely, the two well-known feature
systems of PanPhon (Mortensen et al. 2016) and PHOIBLE (Moran and McCloy 2019)
are being compared directly to SoundVectors with regard to their distinctiveness, i.e. how
many different sounds are actually represented by distinct vectors.

Again, the first step is to import the relevant packages and set up the CLTS and
SoundVector instances:

from pyclts import CLTS
from soundvectors import SoundVectors
from collections import defaultdict
from tabulate import tabulate

clts = CLTS()
sv = SoundVectors(ts=clts.bipa)

So far, this is exactly what we have already seen in the previous section. Note that
there are two further imports which will come in handy later, but you don't need to worry
about them now - both packages should already be installed in your virtual environment
if you have successfully installed pyclts and soundvectors.
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Next, I define a method that retrieves all relevant transcription data from external
catalogues using CLTS. The id parameter represents the internal identifier of a
catalogue, which will be "panphon" and "phoible" in our case.

def load_data(id):
transcriptiondata = clts.transcriptiondata(id)
unique_sounds = set(transcriptiondata.sounds)
unique_sounds.remove("<NA>")
return unique_sounds, transcriptiondata.data

Each catalogue (transcriptiondata) in CLTS has two main attributes, sounds and data.
The former spans the sound inventory covered by the respective system, normalized
according to CLTS conventions; the latter contains all sorts of additional data, including
feature representations, which is obviously the part that we are interested in later on. In
this method, I cast the sounds into a set to avoid duplicates and remove <NA> values,
sounds that are not recognized by CLTS.

I define a second convenience method that groups a set of sounds by their feature
representation. This allows me to count the equivalence classes, i.e. how many unique
feature representations exist among all the sounds, and therefore how many sounds share
their feature representation with at least one other sound.

def map_vector_to_sounds(sounds, vector_func):
features_to_sound = defaultdict(list)
for s in sounds:

features_to_sound[vector_func(s)].append(s)

return features_to_sound, len(features_to_sound), len(sounds)

The method obtains the feature representation for every sound in sounds by calling the
specified function vector_func, and then maps the unique feature vectors to the sounds
they represent. The length of the resulting dictionary features_to_sound is therefore the
number of unique feature vectors, while the length of sounds obviously is just the size of
the present sound inventory.

Finally, we can put the pieces together and compare the distinctiveness of
SoundVectors to PanPhon and PHOIBLE respectively:

table = []
for system in ["phoible", "panphon"]:

unique_sounds, data = load_data(system)
_, num_unique_vecs_own, num_unique_sounds =

map_vector_to_sounds(unique_sounds, lambda x:
data[x][0]["features"])

_, num_unique_soundvecs, _ = map_vector_to_sounds(unique_sounds,
sv.get_vec)



Rubehn Using SoundVectors with CLTS

65

table.append([system.upper(), num_unique_sounds, num_unique_vecs_own,
num_unique_soundvecs])

print(tabulate(table, headers=["SOURCE", "UNIQUE SOUNDS", "UNIQUE VECTORS
(OWN)", "UNIQUE VECTORS (SOUNDVEC)"]))

This code prints the following table as output:

SOURCE UNIQUE SOUNDS UNIQUE VECTORS
(OWN)

UNIQUE VECTORS
(SOUNDVEC)

PHOIBLE 2757 2341 1760
PANPHON 5619 3089 3747

So how can we interpret these results? First, one can see that PHOIBLE covers much
less sounds than PanPhon, only around half of its inventory. The reason for the difference
lies in different purposes of both datasets. PHOIBLE's size of the inventory depends
strictly on the phoneme inventories that the dataset covers. Only those sounds are listed
that can be shown to have been proposed for a concrete phoneme inventory. The lower
number of sounds thus simply reflects the documentation status of PHOIBLE. PanPhon,
on the other hand, was designed for computational tasks, where sound vectors are
provided for arbitrary sounds in phonetic transcription data. The idea was to provide a
very large number of theoretically possible sounds in order to be able to cope with unseen
phonetic transcription data.

The comparison between PanPhon and SoundVectors reveals that the latter system
has a higher degree of distinctiveness, generating ~700 more unique feature
representations for the given alphabet of 5,619 sounds. At first glance, this results seems
obvious when considering the feature inventory sizes: SoundVectors defines 39 features,
allowing for much higher combinatoric power than the 25 features defined in PanPhon.
These raw numbers, however, are misleading, since in the end, SoundVectors and
PanPhon share the same features to describe simple sounds. The difference between the
feature inventory sizes has to be attributed mainly to the fact that SoundVectors can
describe complex sounds like contour tones, diphthongs, and consonant clusters, for
which a number of features was added. Since PanPhon does not cover those sounds, the
system is not designed to describe them and thus lacks appropriate features. The 5,619
sounds in question here, however, are directly derived from PanPhon itself -- so there is
no complex sound among them, rendering (at least) 10 features from SoundVectors
completely unused in this context. That effectively reduces the employed feature
inventory from SoundVectors to a size that is fairly comparable to PanPhon, while still
maintaining a higher degree of distinctiveness.



CALCiP Volume 7, Number 2

66

Arguably more curious, however, is the comparison between PHOIBLE and
SoundVectors. With 37 features, PHOIBLE defines a feature inventory of a very similar
size to SoundVectors, albeit a bit smaller. PHOIBLE also contains complex sounds, so
here, all of the features defined in SoundVectors actually have to be used. As a result,
PHOIBLE appears to be considerably more distinctive than SoundVectors.

However, the increased distinctivity of PHOIBLE vectors is due to the encoding of
complex sounds. Consider the consonant cluster [mb]: The value for the feature "nasal"
is "+,-", indicating that the first part of the sound is [+nasal], and the second part is [-
nasal]. PHOIBLE thus allows for features having multiple values at once. This means,
that the feature system in PHOIBLE deviates from the binary (ternary, considering non-
applicable features) feature notion. This obviously leads to a drastic increase of possible
feature combinations, which explains the distinctivity of PHOIBLE's system -- out of
the 2,757 defined sounds, 1,021 contain at least one multi-valued feature. While this
feature design may be useful for the purpose for which PHOIBLE was created, it is less
useful for downstream tasks in computational linguistics, where numerical vectors are
required. When allowing features to have multiple values, the effective vector size would
be twice as large (since two slots for each complex sound would have to be reserved for
each feature value).

5 Conclusion and Outlook

Feature vectors have already proven to be useful for many applications in computational
linguistics and will probably continue to do so. With SoundVectors, we have released a
lightweight and robust tool that aims to overcome the major weakness of previous
systems by integrating a generative aspect, exploiting the power of CLTS in parsing and
describing sounds. This tutorial has shown how SoundVectors can be used in practice
and how the feature system can be compared to features systems provided by PanPhon
and PHOIBLE. Future work will hopefully allow us to illustrate the benefits of a
generative system for the handling of phonetic transcriptions in more detail.
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Data and code can be found at https://github.com/calc-project/soundvectors-blogpost
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