
Computer-Assisted Language Comparison in Practice

Tutorials on Computational Approaches to the History and Diversity of Languages

Computer-Assisted Language Comparison in Practice
Volume 8, Number 2
https://calc.hypotheses.org/8723 DOI: 10.15475/calcip.2025.2.2
Published under a Creative Commons Attributions 4.0 LICENSE
Published on 25/08/2025

Illustrating Data
Curation in NoRaRe
with the Help of
Templates
Johann-Mattis List
Chair for Multilingual Computational Linguistics
University of Passau

This study introduces a collection of templates that can be used to contribute data to the
Database of Norms, Ratings, and Relations (NoRaRe) of words and concepts. The
templates are intended to facilitate the process of dataset conversion and serve as a starting
point for those who are interested to contribute data to the catalog. A first template
structure with two sample datasets is introduced and discussed in more detail, pointing to
those aspects of data curation that may lead to confusion among users who contribute the
first time to the NoRaRe database.

1 Introduction

The Database of Norms, Ratings, and Relations (NoRaRe, Tjuka et al. 2022,
https://norare.clld.org) offers a principled collection of data on speech norms for words
across different languages, linked to identical concepts that are defined through the
Concepticon catalog (List et al. 2025, https://concepticon.clld.org). While we are
generally very happy with the NoRaRe data collection, given that it offers data from
various sources in a unique and standardized form, we are aware that data access and
data curation may cause frustration with some users, given that they require both basic
knowledge about the commandline and quite solid knowledge about Python
programming.

While we think that data access can be facilitated by providing more targeted
tutorials, providing detailed tutorials on the curation of NoRaRe data may still be
frustrating for potential contributors, given that the amount of data and scripts that has
been accumulated in the original NoRaRe database by now is constantly growing and
may easily overwhelm people who are new to the workflow of test-driven data curation

https://doi.org/10.15475/calcip.2025.2.2
https://calc.hypotheses.org/8723
https://norare.clld.org/
https://concepticon.clld.org/

CALCiP Volume 8, Number 2

66

(for details on these workflows, see Tjuka et al. 2023 on Concepticon and NoRaRe, and
List et al. 2022 on Cross-Linguistic Data Formats in general). General information on
how to add datasets to NoRaRe can be found in two studies introducing the data and the
workflow for data curation (Tjuka et al. 2022 and Tjuka et al. 2023) and in a recent
tutorial by Ahmedović (2025). In order to supplement these attempts to help people
getting started with NoRaRe data curation, this study introduces a new approach, based
on a template dataset. This dataset cannot only be used to illustrate different ways in
which data can be added to the catalog, it can also be used as the starting point for those
who want to contribute data to the original NoRaRe collection.
2 Illustrating Data Curation with Templates

Data curation in NoRaRe is based on two major components. On the one hand, we have
a code package, PyNoRaRe (Forkel and List 2024, https://pypi.org/project/pynorare/),
that can be invoked via the command line in order to convert individual datasets into
the standardized tabular format required by NoRaRe. On the other hand, we have a
folder structure, containing the original NoRaRe data, which is read and modified when
invoking the code from the command line.

Since NoRaRe has grown drastically over time, listing by now close to 100 individual
datasets (with new datasets being planned to be added during the next time), working
with the entire NoRaRe database can feel cumbersome, given the amount of data that
the repository stores in different folders and files. In order to cope with this problem, I
have now created a first template repository that can be used to test and teach data
curation in NoRaRe with targeted exemplary datasets that have been created specifically
to illustrate the data curation process. While the template repository by now only
contains two artificial sample datasets, illustrating two ways in which data can be
curated in NoRaRe, I hope that we can extend the repository in the future by adding
targeted illustrations.
3 Getting Started with NoRaRe

3.1 Installation

In order to get started with NoRaRe, you must make sure to install the PyNoRaRe
package via pip in a fresh virtual environment (https://pypi.org/project/pynorare, List
and Forkel 2024). Having installed the package, you may need additional packages for
the handling of individual datasets, but most basic packages will be installed with this
installation alone. In order to access NoRaRe data, you also need to download the
NoRaRe database itself, along with the data underlying Concepticon. The easiest way

https://pypi.org/project/pynorare/
https://pypi.org/project/pynorare

List Templates for NoRaRe

67

to get started, is to download both packages with git. This can be done with the help of
the following commands. The first command installs pynorare, the second command
downloads the template collection — instead of the original NoRaRe data —, and the
third command downloads the most recent version of the Concepticon reference catalog
(Version 3.4.0).
$ pip install pynorare
$ git clone https://codeberg.org/digling/norare-template
$ git clone https://github.com/concepticon/concepticon-
data --depth 1 --branch v3.4.0

If you open the norare-template folder, you will find two folders (datasets and
references) and two basic files (datasets.tsv and norare.tsv). The current
version of the template repository will ignore the norare.tsv file. It describes
individual columns of individual datasets, but it is not needed to guarantee the basic
functionality of curated data in NoRaRe and maybe introduced in future modifications
to the template. The file datasets.tsv contains a header and two entries that provide
information on two datasets for which templates were created in the repository. We call
these datasets Template-0001-Base and Template-0002-Manual,
respectively, thereby following the naming convention of datasets in NoRaRe, which
start with the author name (here replaced by Template), followed by the year of
creation (here replaced by 0001 and 0002 to employ some numerical ordering of
template data), and followed by a short string illustrating the main purpose of the data
(Base illustrating basic mapping, and Manual illustrating how data can be mapped
manually).

Additional information on individual datasets is provided in the following columns.
When filling in the field REFS, it is important to know that this corresponds to a
BibTeX-entry. The corresponding BibTeX-file can be found in the references folder
(references.bib). The description of the data in the NOTE field will later be displayed on
the NoRaRe website (https://norare.clld.org), as is the content of the other columns.

The datasets themselves rest in the folder datasets. Per dataset, we add a dedicated
folder that should have the same name as the dataset ID as indicated in
datasets.tsv. This means we find two folders in the current template,
Template-0001-Base and Template-0002-Manual. Inside a dataset folder,
there are two required files that need to be provided by the data curators. One file, called
norare.py, contains the code that is needed to download the original data and convert
it to the NoRaRe formats, and one file, consisting of the dataset ID, extended by .tsv-
metadata.json, contains the CSVW specification that describes the content of all

https://norare.clld.org/

CALCiP Volume 8, Number 2

68

columns in the resulting NoRaRe dataset and — if applicable — how they relate to the
original data.
3.2 Basic Principles of Data Curation

The basic procedure for adding datasets to NoRaRe consists in two steps, with both
steps being automatized in such a form that they can be triggered one after another. The
first step, called the download, consists in downloading the data and storing the data in
a folder for raw data. The second step is the mapping step in which data are mapped to
Concepticon. As a result of these two steps, a concept list is written to file, containing
standardized data of concepts linked to Concepticon.

Both steps are triggered by adding a new folder to the collection of datasets in the
original norare-data-folder. The name of this new folder should start with the name of
the first author of the dataset, separated by a dash from the year, followed by a
description of the kind of data, one must place two files in order to go ahead. Two files
must be placed into this folder to get started. The first file is a metadata file that follows
the CSVW standard (CSVW, https://csvw.org) and crucially provides information in
JSON format for the names and content of the columns that the resulting TSV file in
which the mapped concepts are added automatically later contains. The file itself should
contain the name of the dataset, ending in .tsv-metadata.json. To describe the
full structure of the file here would go too far. It seems sufficient to recommend to take
an existing file from the other datasets that have already been added to NoRaRe and to
adjust the columns in this file accordingly.

The second file is a Python script that triggers how data are downloaded and how data
are mapped to Concepticon with the help of two functions. This file should be called
norare.py. Essentially, this file should contain two functions, one called download
and one called map. A minimal example fo these functions is shown below.
def download(dataset):

pass

def map(dataset, concepticon, mappings):
pass

In the following, these commands will be illustrated in more detail.
3.3 Defining the Metadata

The metadata file that describes the structure of the TSV file that holds the mappings of
a given resource to Concepticon plays a crucial role in the NoRaRe workflow. Its job is
not only to handle the access to already mapped data. It also allows to provide active

https://csvw.org/

List Templates for NoRaRe

69

mappings between the columns of a sheet in the original data and the data that we want
to create from it. Thus, the metadata sheet itself is crucial for the mapping procedure. In
order to get started with such a file, it is best to start from a template. The file is named
after a dataset, extended by the suffix .tsv, and extended by the suffix -
metadata.json. Thus, in the case of our base template, Template-0001-Base
would be the name of the dataset and the dataset folder, Template-0001-
Base.tsv is the name of the data file that we want to produce (providing access to the
mappings), and Template-0001-Base.tsv-metadata.json is the name of
the metadata file, describing the data with the help of the CSVW specification. The file
for our base template is shown below.
{

"url": "",
"@context": ["http://www.w3.org/ns/csvw", {"@language": "en"}],
"dc:title": "Template for Adding Data to NoRaRe.",
"dc:source": "https://calclab.org/norare/example/",
"dc:references": "Template",
"dcat:keyword": ["template", "example"],
"dc:description": "A template file that can be used as the basis for adding

new data to NoRaRe.",
"dialect": {

"delimiter": "\t",
"encoding": "utf-8",
"header": true

},
"tables": [{

"tableSchema": {
"columns": [

{"name": "CONCEPTICON_ID", "datatype": "integer"},
{"name": "CONCEPTICON_GLOSS", "datatype": "string"},
{"name": "GERMAN", "datatype": "string", "titles": "word"},
{"name": "GERMAN_FLOATS", "datatype": {"base": "float"},
"titles": "Floats"},
{"name": "GERMAN_INTEGERS", "datatype": "nonNegativeInteger",
"titles": "Integers"},
{"name": "GERMAN_STRINGS", "datatype": "string",
"titles": "Strings"},
{"name": "GERMAN_JSON", "datatype": "json", "titles": "JSON"}

],
"foreignKeys": [{

"columnReference": "CONCEPTICON_ID",
"reference": {

"resource": "../concepticon.tsv",
"columnReference": "ID"

}
}],
"aboutUrl": "http://concepticon.clld.org/parameters/{CONCEPTICON_ID}"

},
"url": "Template-0001-Base.tsv"

}]
}

CALCiP Volume 8, Number 2

70

The first lines of this file, up to the tables key provide some basic metadata
information on the dataset, allowing users to add some description of the data, a
title, and keywords. The tables key provides access to the actual tables of the data.
A table is defined by a schema (tableSchema and a url (the path to the file, identical
with the file name in this case).
"tables": [

{
"tableSchema": {},
"url": "Template-0001-Base.tsv"

}
]

The table schema consists of three objects, columns, foreignKeys, and
aboutUrl. While the latter two can be left unchanged, the columns must be specified
for the target dataset. Each column is represented by a dictionary of key-value pairs, of
which three are regularly used in NoRaRe datasets, namely name, datatype, and titles.
The key name refers to the target name of the column in the corresponding TSV file
that one wants to create. The key datatype defines the type of the data in the cell. For
the representation of datatypes, there are numerous options in CSVW, one can specify
minimum and maximum values, patterns by regular expressions, different kinds of
numbers, and boolean data. One can even — and this is important for all kinds of data
where "normal" datatypes do not suffice — use JSON as a datatype. This offers the
possibility to render complex objects, which comes in handy when dealing with concept
relations (Bocklage et al. 2024).

The titles key in the column specification of CSVW metadata files plays an
important role in NoRaRe, since it is used to provide a direct mapping between the
columns in a source CSV file and the target CSV file produced by the mapping
procedure of NoRaRe. Thus, in our sample metadata file, we have two target columns
GERMAN and GERMAN_FLOATS, with the titles word and Floats, respectively,
as shown below.

{
"name": "GERMAN",
"datatype": "string",
"titles": "word"

},
{

"name": "GERMAN_FLOATS",
"datatype": {"base": "float"},
"titles": "Floats"

},

List Templates for NoRaRe

71

In the internal semantics of the NoRaRe database, the name and titles attributes map
the original data, the CSV file beispiel.tsv with the columns words, Strings, Integers,
Floats, and JSON, to the NoRaRe representation of the data in the CSV file
Template-0001-Base.tsv with the columns GERMAN (words),
GERMAN_STRINGS (strings), GERMAN_INTEGERS (Integers),
GERMAN_FLOATS (Floats), and GERMAN_JSON (JSON).

In order to create the metadata file, it has been shown to be the best strategy to use a
template (as the one shown here), and to modify it subsequently, by adding or removing
columns, and by modifying or refining the datatypes, target names, and titles. As a rule,
a NoRaRe dataset should consist of two columns providing information on Concepticon
mappings (CONCEPTICON_ID and CONCEPTICON_GLOSS), one column
providing information on the actual words or concept glosses (GERMAN in our
example), and one or more additional columns providing information on norms, ratings,
or relations.

In order to understand how complex datatypes can be defined, it is recommended to
study the information provided on the CSVW website
(https://w3c.github.io/csvw/primer/#new-datatypes) or to check out the examples that
we provide in NoRaRe itself. Obviously, datatypes would be a good example for a
further extension of the NoRaRe templates that would, however, go beyond the state of
this study.
3.4 Downloading Original Data
The download command -- when triggered with actual code -- takes the variable dataset
as input. This variable will be passed from the commandline when calling norare
download DATASET, where DATASET stands for the name of the dataset that one
wants to add. The dataset variable itself is an object that offers additional functions that
allow for a convenient downloading of data and storing the downloaded data in a folder
raw, without having to do this explicitly in the code. Thus, one can extend the base
function as shown below, in order to download the TSV file example.tsv from the
URL https://calclab.org/examples/example.tsv.
def download(dataset):

dataset.download_file(
'https://calclab.org/examples/example.tsv',
'beispiel.tsv')

This command can be initiated by typing the following command in the terminal.

https://w3c.github.io/csvw/primer/#new-datatypes
https://calclab.org/examples/example.tsv.

CALCiP Volume 8, Number 2

72

$ norare --norarepo=norare-data --repos=concepticon-data download
Template-0001-Base

This will download the respective file from the website and store it in a folder raw,
assigning it the name beispiel.tsv in that very folder. There are more possibilities
to download data. For example, you can download and unzip a file directly, using the
dataset.download_zip command, that takes three arguments as input: the
original URL of the dataset (ending in .zip), the target name that you want to give to
the data, and the file that you want to extract from the repository itself. An example is
included in the template Template-0001-Base, where the code for download
actually downloads two files, the file examples.tsv and the file beispiel2.tsv
from the zipped archive example.zip.
def download(dataset):

dataset.download_file('https://calclab.org/examples/example.tsv',
'beispiel.tsv')

dataset.download_zip("https://calclab.org/examples/example.zip",
"example.zip",
"beispiel2.tsv")

If you do not want to download data, or if you do not need to download data, you can
leave the map-command empty, by adding a pass statement under the function.
def download(dataset):

pass

In addition, you can place the data in their original form into the raw folder and submit
it to the repository. This may be useful in those cases where you have small datasets that
can be openly shared.
3.5 Mapping Data Automatically

Data in NoRaRe must be mapped to Concepticon, since the links to Concepticon are the
major way to compare information on particular concepts across languages. There are
basiclly two ways in which you can proceed in order to map your concepts. On the one
hand, you can use the integrated functions for automated concept mapping that come
along with NoRaRe and Concepticon itself. On the other hand, you can use custom
procedures to map your concepts, or you could even manually map your concepts to
Concepticon, provide the information in the original data or in the raw folder or take

List Templates for NoRaRe

73

the information from projects like Concepticon, and later create the NoRaRe dataset
without using the automated mapper shipped along with NoRaRe.

As an example for the typical usecase where we start from some dataset providing
norms or ratings in some language, let us look at the template Template-0001-
Base that builds on automated mapping with the help of the following map-command.
def map(dataset, concepticon, mappings):

sheet = dataset.get_csv(
'beispiel.tsv',
delimiter="\t",
dicts=True
)

dataset.extract_data(
sheet,
concepticon,
mappings,
gloss='GERMAN',
language='de'
)

The map function here takes three arguments as input, dataset, concepticon,
and mappings. As a NoRaRe user, you do not necessarily need to care for their
internal structure, since they are provided by the commandline procedure. The argument
dataset is the same complex object providing access to various routines that we also
used in the download procedure. The concepticon argument provides access to the
PyConcepticon API (Forkel et al. 2024, https://pypi.org/project/pyconcepticon). This
means one can access any datapoint and concept list that Concepticon offers in the
version that one selects from the commandline. It also means one can enrich a given
dataset from Concepticon with additional data in NoRaRe. The mappings argument
provides access to the mappings from Concepticon. These mappings are extracted from
all concept lists that are linked by a respective Concepticon version and allows to check,
to which Concepticon ID and Concepticon Gloss a given word in a given language with
a given part of speech (if available) is linked in the Concepticon project. The mappings
in this form provide the core of all the mappings used in NoRaRe.

The code that we added to implement the map functions consists itself of two
functions, both provided by the dataset object. First, we extract the data from the CSV-
file beispiel.tsv, stored in the raw folder (the file that we just downloaded), with
the help of the dataset.get_csv function (where we indicate that the separator of
the CSV-file is a tabstop). The resulting sheets object is a list of ordered dictionaries in

https://pypi.org/project/pyconcepticon

CALCiP Volume 8, Number 2

74

Python, that represents cells as key-value pairs, with column names as keys, and cell
content as values, as shown below for clarity.
[

OrderedDict(
{

'word': 'Hand',
'Floats': '1.2',
'Integers': '1', 'Strings':
'eine Hand',
'JSON': '{"name": "hand"}'

}
),
OrderedDict(

{
'word': 'Fuß',
'Floats': '1.3',
'Integers': '2',
'Strings': 'ein Fuß',
'JSON': '{"name": "Fuß"}'

}
),
OrderedDict(

{
'word': 'Stadt',
'Floats': '1.5',
'Integers': '3',
'Strings': 'eine Stadt',
'JSON': '{"name": "city"}'

}
),
OrderedDict(

{
'word': 'Apfel',
'Floats': '1.5',
'Integers': '3',
'Strings': 'eine Stadt',
'JSON': '{"name": "city"}'

}
),
OrderedDict(

{
'word': 'Arm',
'Floats': '1.2',
'Integers': '1',
'Strings': 'eine Hand',
'JSON': '{"name": "hand"}'

}
)

]

Then, we use the command dataset.extract_data to map the data automatically to
Concepticon and only retain those lines in the original data that can be mapped. The
extract_data-command itself employs the mappings between the column names

List Templates for NoRaRe

75

of the original data and the column names of the target CSV file that was discussed
before in §3.3. Taking the sheet that we just extracted before as input, as well as the
concepticon object, and the mappings, that the map-function receives from the
commandline usage of NoRaRe, the method uses the information on the gloss field
(which refers to the name that this column will receive in the target language, thus
aiming at the German word forms in the original column words in our sample data) and
the language (represented for the major languages by a two-letter code) in order to
assess which of the Concepticon concept receives the highest score in the automated
mapping procedure. If no mapping is found, this word form will not be written to the
target file. Furthermore, each word form is mapped to maximally one Concepticon
concept set.

In order to check how well the automated mapping procedure works, one just has to
trigger the command of the base template, passing the paths to the NoRaRe template
folder and the Concepticon data folder along with the map command and the name of
the dataset one wants to map, as shown below.
$ norare --norarepo=norare-template --repos=concepticon map
Template-0001-Base

The resulting mapping will be written to the file Template-0001-Base.tsv,
which is the file that we have already described through our CSVW metadata file. The
first four columns of this file are shown below in Table 1.
CONCEPTICON_ID CONCEPTICON_GLOSS GERMAN GERMAN_FLOATS1277 HAND Hand 1.21301 FOOT Fuß 1.31320 APPLE Apfel 1.51391 TOWN Stadt 1.51673 ARM Arm 1.2Table 1: Output of the automated concept mapping.
As can be seen, the automated mapping procedure identifies Concepticon glosses for

all five German words and writes all columns that we defined in the metadata file to the
new file. While these mappings themselves are considerably easy to achieve, it is always
recommended to be careful with the trust in automated mappings. While we currently
assume that the errors fall below a margin of 10%, we have not yet carried out detailed
error statistics. Our trust in the mapping algorithm is rather based on our concrete
experience in using the algorithm to preprocess large Concepticon concepts lists (Tjuka
et al. 2023).

CALCiP Volume 8, Number 2

76

3.6 Mapping Data Explicitly

While the automated mapping procedure described in the previous section works well
and sufficiently in most cases, there may be situations in which one does not want to
resort to automated mapping. On the one hand, one might have access to better
mappings, for example, produced by manual data curation. On the other hand, one might
want to make use of a different than the standard method to produce the mappings in
question.

The NoRaRe data curation workflow allows for this flexibility, which we illustrate
in the template dataset Template-0002-Manual, as part of our initial template
collection for NoRaRe. This template uses the same metadata file (with the exception
that the file name has changed to the name of the template). It also employs the same
download routine. What differs, is the mapping routine, which makes use of the PySem
package (List 2025, https://pypi.org/project/pysem/), introduced in List (2022), which
can be installed pip (pip install pysem). The modified mapping routine that
makes explicit use of the to_concepticon function in PySem is illustrated below.
def map(dataset, concepticon, mappings):

sheet = dataset.get_csv(
'beispiel.tsv',
delimiter="\t",
dicts=True
)

get mapping from old to new column names
s2t = {str(c.titles): c.name for c in dataset.columns if c.titles}

table = []
for row in sheet:

maps = to_concepticon(
[

{
"gloss": row["word"],
},

],
language="de"
)

if maps[row["word"]]:
cid, cgl, pos, sim = maps[row["word"]][0]
table += [{

"CONCEPTICON_ID": cid,
"CONCEPTICON_GLOSS": cgl,
s2t["word"]: row["word"],
s2t["Floats"]: row["Floats"],
s2t["Integers"]: row["Integers"],
s2t["Strings"]: row["Strings"],
s2t["JSON"]: row["JSON"]
}]

dataset.write_table(table)

https://pypi.org/project/pysem

List Templates for NoRaRe

77

While the routine to load the data from the CSV file remains the same here, the
difference lies in the way in which the target NoRaRe dataset is written to a table. Here,
the code first explicitly extracts the information on the mapping from source to target
column headers, storing them in the dictionary s2t. It then creates an empty list called
table and afterwards iterates over all individual entries in the source table, mapping
all entries automatically with the help of PySem’s modified mapping routine. This table
is a list of dictionaries whose keys correspond to the new column headers that we want
to write to the target CSV file defined by the CSVW metadata file. The table itself can
then be written to the target file with the help of the command
dataset.write_table. This command takes the table as input and takes
essentially care of all the rest. This means, among others, that only those columns that
were defined in the CSVW metadata file will be written to the target spreadsheet.
Columns defined in the metadata but not present as keys in the dictionary will be left
empty. For this reason, it is important to check the resulting data thoroughly, since
spelling errors can easily slip in when creating and modifying the metadata.

The method to write a table explicitly outlined here can be used in all those cases
where the NoRaRe data one wants to produce differs from the standard datasets that one
encounters so far in NoRaRe. Allowing for this flexibility with new datasets that have
not been encountered before has the advantage that it allows us to explore new datatypes
for NoRaRe and later decide if we write new regular routines to map them. When
dealing with concept networks, for example, it may well be that we add a more targeted
routine in the future, even if for now we add them explicitly in NoRaRe.
4 Creating New Data from Templates

4.1 Checklist for the Creation of NoRaRe Datasets

NoRaRe datasets require more integration beyond the dataset folder (whose structure
was described before in due detail). Table 2 gives a short checklist that can be used when
creating new NoRaRe datasets, indicating all those places where things need to be
modified.

This checklist falls short in describing the data in the file norare.tsv. This means
the data can be accessed via the NoRaRe API and individual scripts can be written to
integrate the data in scientific programming routines. Only by adding information on
the individual columns in norare.tsv, however, we can make sure that the data can
be identified and compared with similar datapoints. The details of how to add this
column-specific information are not discussed here, since our initial templates
concentrate for now only on the dataset creation. In the future, we may add more
examples that also show how the data can be further integrated.

CALCiP Volume 8, Number 2

78

Operation File Note
Create dataset folder. datasets/DATASET Follow specific naming conventions.Create Python file indataset folder datasets/DATASET/norare.py Add download and map commands.
Create CSVW metadatafile in dataset folder. datasets/DATASET/DATASET.tsv-

metadata.json Use titles and names to link column names.
Add dataset to the list ofdatasets. datasets.tsv Fill in all fields, pay attention to the ID and REFS.
Add reference to thebibliography. references/references.bib Use the key that was used in the REFS column of

datasets.tsv.
Download dataset. norare download DATASET Run the command to make sure the downloadroutine works as expected.
Map dataset. norare map DATASET Run the command to make sure the mappingproceeds as expected.
Validate dataset. norare validate DATASET Run the command to make sure the data validates(also check manually by inspecting the TSV file).Table 2: Checklist for the different steps needed to integrate a dataset in NoRaRe.
4.2 Basic Tips for Generating Derived Datasets

If you want to derive your own datasets from one of the templates introduced above, the
first step that I can recommend would consist in locating the data, ideally finding a
regular URL from which they can be downloaded, and a reference that can be cited. As
next step, you would determine the name of the dataset, as a combination of hte family
name of the first author, along with the year of the publication, and a short name that
introduces the data. With this information, you can then create a folder in the norare-
template directory, add a first draft norare.py script and copy and paste one of the
sample metadata files that we provide in the norare-template folder. Having
determined how to download the data (if regular download does not work and the data
are distributed with open licenses, you can also simply paste them to the raw folder of
the dataset directory), one would then elaborate how to map the data to Concepticon.
When working with automated mapping procedures, one would first determine the
relation between the columns of the original spreadsheet and the columns that one wants
to define in the target table. After adding these relations to the metadata file, one could
start experimenting with an initial mapping routine. If the data are more complex in
nature, or if mappings are also available independently, one would have to write code
that loads the data and converts them to the tables along with mappings to Concepticon,
as illustrated in §3.6. Before running any mapping or download commands, the
reference would have to be provided in BibTeX format and the dataset would have to
be described properly in the CSV file that stores informatio on all individual datasets.

Having created a dataset that passes both individual and general tests, it will be
straightforward to copy-paste the folder and the modified lines to the original NoRaRe

List Templates for NoRaRe

79

data, currently curated on GitHub (https://github.com/concepticon/norare-data). From
there, one would then make a pull request and hope for a quick and productive review
process by the NoRaRe team.
5 Outlook

In the future, we hope to find time to add more templates to NoRaRe in order to illustrate
how particular types of data can be handled. While NoRaRe itself provides plenty
examples of how data has been handled in the past by us, we are aware that it may be
confusing for new contributors to build directly on these examples when trying to
integrate their own data into the NoRaRe catalog. Since we hope to be able to integrate
quite a few more datasets on concept relations in the future, we will need better tutorials
that help contributors to get started with NoRaRe. The templates can be understood as
a first step towards this goal. We hope that we also will find time to follow up with
tutorials that illustrate more broadly how NoRaRe can be put to active use.
References

Ahmedović, Mira (2025): Handling Non-Standard Datasets in NoRaRe: A Practical Guide. Computer-Assisted Language
Comparison in Practice 8.1. 17–23. https://doi.org/10.15475/calcip.2025.1.3

Bocklage, Katja and Di Natale, Anna and Tjuka, Annika and List, Johann-Mattis (2024): Representing the Database of
Semantic Shifts by Zalizniak et al. from 2024 in Cross-Linguistic Data Formats. Computer-Assisted Language
Comparison in Practice 7.1. 25-35. https://doi.org/10.15475/calcip.2024.1.4

Robin Gower (2021): CSV on the Web. Stirling: Swirrl. https://csvw.org

List, Johann-Mattis and Tjuka, Annika and Blum, Frederic and Kučerová, Alžběta and Barrientos Ugarte, Carlos and
Rzymski, Christoph and Greenhill, Simon J. and Robert Forkel (2025): CLLD Concepticon [Dataset, Version 3.3.0].
Leipzig: Max Planck Institute for Evolutionary Anthropology. https://concepticon.clld.org

List, Johann-Mattis (2022): How to Map Concepts with the PySem Library. Computer-Assisted Language Comparison in
Practice 5.1. 1-5. https://calc.hypotheses.org/3193

List, Johann-Mattis and Hill, Nathan W. and Forkel, Robert (2022): A new framework for fast automated phonological
reconstruction using trimmed alignments and sound correspondence patterns. In: Proceedings of the 3rd Workshop on
Computational Approaches to Historical Language Change. Association for Computational Linguistics 89-96.
https://aclanthology.org/2022.lchange-1.9

Forkel, Robert and Rzymski, Christoph and List, Johann-Mattis (2024): PyConcepticon [Python library, Version 3.1.0].
Leipzig: Max Planck Institute for Evolutionary Anthropology. https://pypi.org/project/pyconcepticon

Forkel, Robert and List, Johann-Mattis (2024): PyNoRaRe [Python library, Version 1.1.0]. Passau: MCL Chair at the
University of Passau. https://pypi.org/project/pynorare

List, Johann-Mattis (2025): PySem: Python library for handling semantic data in linguistics [Software, Version 1.2.1].
Leipzig: Max Planck Institute for Evolutionary Anthropology. https://pypi.org/project/pysem

Tjuka, Annika and Forkel, Robert and List, Johann-Mattis (2022): Linking norms, ratings, and relations of words and
concepts across multiple language varieties. Behavior ResearchMethods 54.2. 864–884. https://doi.org/10.3758/s13428-
021-01650-1

https://github.com/concepticon/norare-data
https://doi.org/10.15475/calcip.2025.1.3
https://doi.org/10.15475/calcip.2024.1.4
https://csvw.org/
https://concepticon.clld.org/
https://calc.hypotheses.org/3193
https://aclanthology.org/2022.lchange-1.9
https://pypi.org/project/pyconcepticon
https://pypi.org/project/pynorare
https://pypi.org/project/pysem
https://doi.org/10.3758/s13428-021-01650-1
https://doi.org/10.3758/s13428-021-01650-1

CALCiP Volume 8, Number 2

80

Tjuka, Annika and Forkel, Rober and List, Johann-Mattis (2023): Curating and extending data for language comparison in
Concepticon and NoRaRe [version 2; peer review: 2 approved]. Open Research Europe 2.141.
https://doi.org/10.12688/openreseurope.15380.3

Supplementary Material
NoRaRe template data are curated on Codeberg (https://codeberg.org/digling/norare-template, Version 0.1) and archived
with Zenodo (https://doi.org/10.5281/zenodo.16902395).
Funding Information
This project has received funding from the European Research Council (ERC) under the European Union's Horizon Europe
research and innovation programme (Grant agreement No. 101044282). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

https://doi.org/10.12688/openreseurope.15380.3
https://codeberg.org/digling/norare-template
https://doi.org/10.5281/zenodo.16902395
https://doi.org/10.3030/101044282

	Illustrating Data Curation in NoRaRe with the Help of Templates

	1 Introduction

	2 Illustrating Data Curation with Templates

	3 Getting Started with NoRaRe

	3.1 Installation

	3.2 Basic Principles of Data Curation

	3.3 Defining the Metadata

	3.4 Downloading Original Data

	3.5 Mapping Data Automatically

	3.6 Mapping Data Explicitly

	4 Creating New Data from Templates

	4.1 Checklist for the Creation of NoRaRe Datasets

	4.2 Basic Tips for Generating Derived Datasets

	5 Outlook

	References

