Computer—-Assisted Language Comparison in Practice

Tutorials on Computational Approaches to the History and Diversity of Languages

Making a Lexibank
Dataset from Lee’s
“Phonological Features

of Caijia” from 2023

Johann-Mattis List
Chair for Multilingual Computational Linguistics
University of Passau

Caijia is a very interesting Sino-Tibetan language variety. It has been documented only
recently, it seems to belong to the Sinitic branch of Sino-Tibetan, but shows some archaic
features that have led to some controversies among scholars regarding its proper affiliation,
and detailed comparative analyses of the language in comparison with other Sino-Tibetan
languages are still in their infancy. This little study demonstrates how a first published
wordlist of Caijia (Lee 2023) can be prepared for the inclusion in the Lexibank repository.

1 Introduction

According to Lee (2023), Caijia is a Sino-Tibetan language that has only recently been
discovered. First documentation efforts of the language reach back to the 1980s, and
scholars have discussed since then, where in the branch of Sino-Tibetan languages to
place the language variety. Lee provides evidence for the close affiliation of Caijia with
the Sinitic branch of Sino-Tibetan, consisting of the Chinese dialects. Lee's study is
accompanied by a Caijia wordlist that provides word forms for the majority of the 250
concepts that were used to assemble the data for the phylogenetic study of Sino-Tibetan
by Sagart et al. (2019).

Lee archived the data on Zenodo and provided an additional analysis of the data by
segmenting the phonetic transcription into speech sounds. This way of handling the data
makes it very easy for us to conver the dataset to the formats required by the Cross-
Linguistic Data Formats initiative (CLDF, Forkel et al. 2018). Since CLDF itself is the
core format for wordlists used in Lexibank (Blum et al. 2025), the large repository
providing standardized access to numerous mono- and multilingual wordlists for several

Computer-Assisted Language Comparison in Practice
Volume 8, Number 1
URL: https://calc.hypotheses.org/8581 DOI: 10.15475/calcip.2025.1.6

Published under a Creative Commons Attributions 4.0 LICENSE
Published on 25/06/2025

https://doi.org/10.15475/calcip.2025.1.
https://calc.hypotheses.org/8581

CALGCiP Volume 8, Number 1

thousand of the world's languages, it is straightforward to prepare Lee's Caijia data for
inclusion in Lexibank. In the following, I will quickly show how this can be done.

2 Initial Preparations

In order to create a CLDF dataset that is compatible with Lexibank, we start by creating
a couple of basic files. These include the folder r aw, in which we place the raw data, the
file metadata. json, which contains the basic information on the data, a BibTex file
containing the BibTex-entry for the original source, also placed into the folder raw, and
a MarkDown-file contributors.md, listing the contributors in tabular form. Lee's
original supplement is archive with Zenodo in the form of an Excel file. From this file,
I manually extracted the basic sheet and stored it in tab-separated format in a file called
data. tsv, placed in the folder raw. The metadata file looks as follows.

{
"id": "leecaijia",
"title": "CLDF dataset derived from Lee's
\"Phonological Features of Caijia\" from
2023",
"license": "CC-BY-4.0",
"url": "https://doi.org/10.5281/zenodo.5544225",
"citation": "Lee, Man Hei (2023): Phonological features
of Caijia that are notable from a
diachronic perspective.
Journal of Historical Linguistics.
DOI:
https://doi.org/10.1075/jh1.21025.1ee",
"conceptlist": "Sagart-2019-250"
}

From this file, we can see that the ID that we give to the dataset is leecaijia, we also
add a stanardized title for the dataset, that corresponds to most titles that we coin for
CLDF datasets in Lexibank. These contain the name of the original author, the year of
the original publication, and a short title of the original publication. As license, we choose
CC-BY-4.0, the common license used by Zenodo. The citation cites the original
publication in human-readable form, and the URL provides a link to the DOI of the
Zenodo archive. Finally, we add as concept list for the Concepticon project (List et al.
2025) the identifier of the concept list that Lee used for the Caijia data.

The BibTeX file looks as follows, providing the major information on the original
publication in computer-readable format.

50

https://doi.org/10.5281/zenodo.5544225

List Caijia Dataset

@article{Lee2023,
doi = {10.1075/jh1.21025.1ee},
url = {https://doi.org/10.1075/jh1.21025.1ee},
year = {2023},
author = {Lee, Man Hei},
volume = {13},
number {1},
pages = {82-114},
title = {Phonological features of Caijia that are
notable from a diachronic perspective},
journal = {Journal of Historical Linguistics}

}

The file contributors.md lists the contributors for the dataset. These will be processed by
the Lexibank conversion routine and defines how data are handled on Zenodo. It is
therefore important to be clear about the roles that different people play in the creation
of datasets. Our file looks as shown below.

Contributors

Name | GitHub user | Description | Role

| 2= | 2o | 2=
Lee, Man Hei | |author, fieldwork | Author
Johann-Mattis List | @LingulList | maintainer | Editor

What is important here is that we assign the role of the major author to the original
data creator (Man Hei Lee). I placed myself as an editor of the dataset, in order to
indicate that I am the person responsible for the CLDF edition of the data. This shows
that the CLDF version of the data is treated as a new edition, with the editor being
responsible for certain aspects of this edition (e.g. the transparent standardization of the
data).

3 Converting the Data to CLDF

3.1 Initial Preparations

In order to convert the data to CLDF, we must add Python files to the repository. We
first create a setup.py file that allows us to install the data as a software package (while
we usually do not need to do this, the file helps us to install all necessary packages later
on and facilitates the integration).

51

CALGCiP Volume 8, Number 1

from setuptools import setup
import json

with open("metadata.json", encoding="utf-8") as fp:
metadata = json.load(fp)

setup(
name="'lexibank leecaijia',
py_modules=["'lexibank leecaijia'l,
include package data=True,
url=metadata.get("url",""),
zip_safe=False,
entry points={
'lexibank.dataset': [
'leecaijia=lexibank leecaijia:Dataset’',
]
s
install _requires=][
"pylexibank&amp;gt;=3.0.0"
I
extras_require={
"test': [
'pytest-cldf',
I
s

In this file, the only information that varies is the name of the dataset (which will be
given the namespace lexibank_ leecaijia from inside Python, after successful
installation of the dataset as a Python package. To allow for a successful integration of
tests -- making sure that basic aspects of the data remain unchanged -- we furthermore
add the file setup. cfg, offering information on the integration of the package
that we use to validate CLDF data interactively (the content of this file remains
unchanged across all CLDF datasets).

[tool:pytest]

testpaths = test.py

addopts =
--cldf-metadata=cldf/cldf-metadata. json

The test itself can be written to the file test.py. Here, we typically use some very basic
tests that check for the number of word forms (this test must be adjusted to individual
datasets).

def test valid(cldf _dataset, cldf _logger):
assert cldf _dataset.validate(log=cldf _logger)

52

https://pypi.org/project/pytest

List Caijia Dataset

def test forms(cldf _dataset):
assert len(list(cldf _dataset["FormTable"])) == 238

def test parameters(cldf _dataset):
assert len(list(cldf dataset["ParameterTable"])) == 234

def test languages(cldf _dataset):
assert len(list(cldf dataset["LanguageTable"])) ==

3.2 Installing Packages

In order to install CLDFBench (, Forkel and List
2020) along with the PyLexibank plugin (, Forkel et
al. 2024), you must ensure to have created a fresh virtual environment in Python and
activated it properly. Once this has been done, we can install both packages by installing
pylexibank with the help of the Python package manager (note that instead of the
command py thon you may need to type py thon3, depending on your system).

$ python -m pip install pylexibank

This will install PyLexibank with all its dependencies and enable you to run
CLDFBench as a command cldfbench from the commandline.

3.3 Preparing the Major Script for CLDF Conversion

We can now prepare the major Lexibank script. This script 1s called
lexibank leecaijia.py and it consists of one basic class Dataset that handles
the major conversion through individual commands. I will present the script in individual
blocks. First, we import the libraries that we need for the conversion.

import pathlib

import attr

from clldutils.misc import slug

from pylexibank import Dataset as BaseDataset

Among the imports, path1lib is needed for internal reasons, attr as well, and
slug is needed for the formatting of the concept identifiers. The major import that
handles the conversion is the Dataset class from pylexibank that we import with

the alias BaseDataset.

class Dataset(BaseDataset):
dir = pathlib.Path(__file_).parent
id = "leecaijia"
writer_options = dict(keep_languages=False,

53

https://pypi.org/project/cldfbench
https://pypi.org/project/pylexibank

CALGCiP Volume 8, Number 1

keep parameters=False)

The core of this class is the method cmd _makec1df. This method is triggered when
passing the script name as argument from the commandline along with the command
cldfbench lexibank.makecldf that was activated when installing CLDFBench
with the PyLexibank plugin. The method typically must take care of four distinct tasks.
It must (1) add the sources from the BibTeX file, (2) standardize the concepts by creating
a concept list that is linked to Concepticon, (3) standardize the list of languages by linking
languages to Glottolog (, Hammarstrom et al. 2025), and (4) adding
individual word forms to the form table, preferably in segmented form with phonetic
transcriptions conforming to the standard version of the International Phonetic Alphabet
that we defined as part of the Cross-Linguistic Transcription Systems project
(, List et al. 2022).

We start by adding the sources to the command.

def cmd_makecldf(self, args):
(1) add bib
args.writer.add sources()
args.log.info("added sources")

As can be seen, the integrated functionalities passed with the writer class as an
attribute of the variable args offers us convenient basic functions to handle data
automatically. In this case, the file raw/sources.bib is simply copied to the newly created
folder cldf, once running the CLDF conversion. We use the integrated logger args.log to
provide information on the status of the conversion.

We can now add the concepts as our second step of the CLDF conversion.

(2) add concepts
concepts = {}
for concept in self.conceptlists[0].concepts.values():
idx = concept.id.split("-")[-1] + " " +
slug(concept.english)
args.writer.add concept(
ID=1idx,
Name=concept.english,
Concepticon_ID=concept.concepticon_id,
Concepticon_Gloss=concept.concepticon _gloss
)
concepts[concept.id] = idx
args.log.info("added concepts")
Here, we define a dictionary concepts that takes as key the ID of the original concept

list by Sagart et al. (2019) and as value the internal identifier for concepts that we use in
the table for concepts (file cldf/parameters.csv, after successful CLDF

54

https://glottolog.org/
https://clts.clld.org/

List Caijia Dataset

creation), and the form table (file cldf/forms.csv after successful CLDF
creation). The reason is that Lee's data uses the Concepticon ID to identify the concepts,
allowing us to use it as the basic information from which we link the internal identifier
for concepts inside the CLDF dataset that we want to create to the external reference
catalog Concepticon with its Concepticon IDs and Concepticon Glosses as reference
points. We use the function writer.add concept to add the concept to the CLDF
dataset (this creates one row of the parameter table that stores the concepts along with
links to Concepticon). Access to the content of the Concepticon concept list by Sagart
et al. (2019) is established via the information in the file metadata. json, that
provides the identifier of the concept list that we can now access via the attribute
conceptlists, where we find the concept list in position O
(self.conceptlists[0O]).

In order to add the languages to a CLDF dataset, we often proceed in a similar fashion,
adding languages in a loop. In this case, however, there is but one language, so we can
add the language without an extra loop.

(3) add language

args.writer.add _language (
ID="Caijia",
Glottocode="caijl234",
Name="Caijia"
)

args.log.info("added languages")

We can now begin adding the forms. Here, we must carry out some extra operations,
as we must correct some of the entries in Lee's original data file. Lee does not use the
superscript ['] to indicate aspiration, but instead uses a plain [h]. Furthermore, Lee writes
tones as normal numbers, while CLDF requires tone numbers as superscripts. We
therefore start from creating a dictionary that corrects the sounds in question in an
individual manner.

(4) add forms
provide corrections for the data
corrections = {

"tsh": "tsh",
"teh": "tgh",
"kh": "kh",
"th": "th",
"ph": "ph",

}

We now read in the data (again using predefined functionalities from CLDFBench
and PyLexibank).

read in data

55

CALGCiP Volume 8, Number 1

data = self.raw dir.read _csv(
"data.tsv",
delimiter="\t", dicts=True)

extend corrections
for i, row in enumerate(data):
form = row["Caijia (segments separated)"]
for s, t in zip("12345", "t2389").
form = form.replace(s, t)
row["Segments"] = [corrections.get(c, c) for c in
form.split()]

Now, we can add the data in a final loop. Note that the source key (Lee202 3) must
be identical with the key assigned in the BibTeX file. The Parameter ID that we pass
is the internal concept identifier that we created above, and since we only deal with one
language variety, we pass our identifier Caijia directly as Language ID.

add data
for entry 1in data:
if entry["Id"].strip():
cid = entry["Id"]
if entry["Caijia"].strip() != "/":
args.writer.add_form_with _segments(
Language ID="Caijia",
Parameter ID=concepts[cid],
Value=entry["Caijia"]l,
Form=entry["Caijia"],
Segments=entry["Segments"],
Source="Lee2023"

)

4 Running the CLDF Conversion

In order to run the CLDF conversion routine, we only need to open a terminal file in the
folder where the data and the additional scripts and files reside and then type the
conversion command from the commandline. Before, however, we must make sure that
we have access to the three reference catalogs Glottolog, Concepticon, and CLTS. The
easiest way to guarantee this access is to run a command that downloads the data and
stores their location in a configuration file.

$ cldfbench catconfig

If this does not work, you must download the catalogs individually (information can
be found in the supplement to Blum et al. 2025) and point to their locations from the

56

List Caijia Dataset

shell command. With all reference catalogs at our disposal, we can now run the
conversion procedure.

$ cldfbench lexibank.makecldf --glottolog-version=v5.2.1
--concepticon-version=v3.4.0 --clts-version=v2.3.0
lexibank leecaijia.py

This will create something similar to the following output.

INFO running _cmd_makecldf on leecaijia
INFO added sources
INFO added concepts
INFO added languages
INFO file written: /home/mattis/data/datasets/lexibank-
new/leecaijia/cldf/.transcription-report.json
INFO Summary for dataset /home/mattis/data/datasets/lexibank-
new/leecaijia/cldf/cldf-metadata.json
- **Varieties:** 1 (linked to 1 different Glottocodes)
- **Concepts:** 234 (linked to 234 different Concepticon concept
sets)
- **Lexemes:** 238
- **Sources:** 1
- **Synonymy:** 1.02
- **Invalid lexemes:** 0
- **Tokens:** 1,057
Segments: 42 (0 BIPA errors, O CLTS sound class errors, 42
CLTS modified)
- **Inventory size (avg):** 42.00
INFO file written: /home/mattis/data/datasets/lexibank-
new/leecaijia/TRANSCRIPTION.md
INFO file written: /home/mattis/data/datasets/lexibank-
new/leecaijia/cldf/lingpy-rcParams.json
INFO ... done leecaijia [20.0 secs]

From this output, we can see that the conversion was successful. Importantly, the
phonetic transcriptions, the concept mappings, and the linking of the language to
Glottolog all passed the test. The command creates in addition a . zenodo. json file
that can be used to provide important citation information (as defined in
metadata. json)as well as information on the author and the editor of a given dataset
to Zenodo, when uploading the data there ().

5 Conclusion

The data prepared in this sample study is but a single wordlist file, but it offers us many
interesting possibilities for further research. On the one hand, every additional language

57

https://zenodo.org/

CALGCiP Volume 8, Number 1

that we add to big databases like CLICS (Tjuka et al. 2025) and Lexibank (Blum et al.
2025) brings us closer to a satisfying coverage of the world's languages. More
importantly, however, Lee's data gives us access to a language variety whose origin has
not been completely established so far and is still disputed by various scholars. Given
that the data is readily coded in CLDF now, it would be easy to use computational
methods, such as the approach by Blum et al. (2025), in order to check how the Caijia
will be classified by automated approaches. Additionally, the data could be easily
integrated in the database by Sagart et al. (2019) and properly annotated with the help of
computer-assisted tools (List et al. 2025). No matter what study one wants to carry out
with the data, the fact that Lee shared the wordlist in such a clean format made it
extremely easy to integrate the data into Lexibank. Having been integrated with the
thousands of wordlist that are already part of the repository, several additional
investigations of Caijia have now been facilitated.

References

Blum, Frederic and Herbold, Steffen and List, Johann-Mattis (forthcoming): From Isolates to Families: Using Neural
Networks for Automated Language Affiliation. In: Proceedings of the Association for Computational Linguistics 2025.
1-12.

Blum, Frederic and Barrientos, Carlos and Englisch, Johannes and Forkel, Robert and Greenhill, Simon J. and Rzymski,
Christoph and List, Johann-Mattis (forthcoming): Lexibank 2: pre-computed features for large-scale lexical data [version
1; peer review: 3 approved]. Open Research Europe 5.126. 1-19.

Forkel, Robert and List, Johann-Mattis and Greenhill, Simon J. and Rzymski, Christoph and Bank, Sebastian and Cysouw,
Michael and Hammarstrom, Harald and Haspelmath, Martin and Kaiping, Gereon A. and Gray, Russell D. (2018):
Cross-Linguistic Data Formats, advancing data sharing and re-use in comparative linguistics. Scientific Data 5.180205.
1-10.

Forkel, Robert and List, Johann-Mattis (2020): CLDFBench. Give your Cross-Linguistic data a lift. In: Proceedings of the
Twelfth International Conference on Language Resources and Evaluation. 6997-7004.

Forkel, Robert and Simon J Greenhill and Hans-Jorg Bibiko and Christoph Rzymski and Tiago Tresoldi and List, Johann-
Mattis (2024): PyLexibank. The Python curation library for Lexibank [Software Library, Version 3.5.0]. Geneva:
Zenodo.

Hammarstrom, Harald, Martin Haspelmath, Robert Forkel, and Sebastian Bank. 2025. Glottolog
[Dataset, Version 5.2.1]. Leipzig: Max Planck Institute for Evolutionary Anthropology.

Lee, Man Hei (2023): Phonological features of Caijia that are notable from a diachronic perspective. Journal of Historical
Linguistics . 13.1. 82-141.

List, Johann-Mattis and Anderson, Cormac and Tresoldi, Tiago and Forkel, Robert (2022): Cross-Linguistic Transcription
Systems. Version 2.3.0. Jena: Max Planck Institute for the Science of Human History.

List, Johann-Mattis and Tjuka, Annika and Blum, Frederic and Kucerovd, Alzbéta and Barrientos Ugarte, Carlos and

Rzymski, Christoph and Greenhill, Simon J. and Robert Forkel (2025): CLLD Concepticon [Dataset, Version 3.4.0].
Leipzig: Max Planck Institute for Evolutionary Anthropology.

58

https://doi.org/10.48550/arXiv.2502.11688
https://doi.org/10.12688/openreseurope.20216.1
https://www.nature.com/articles/sdata2018205
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.864.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.864.pdf
https://pypi.org/project/pylexibank/
https://glottolog.org/
https://doi.org/10.1075/jhl.21025.lee
https://clts.clld.org/
https://concepticon.clld.org/

List Caijia Dataset

List, Johann-Mattis and van Dam, Kellen Parker and Blum, Frederic (2025): EDICTOR 3. An Interactive Tool for
Computer-Assisted Language Comparison [Software Tool, Version 3.1]. Passau: MCL Chair at the University of Passau.
https://edictor.org

Sagart, Laurent and Jacques, Guillaume and Lai, Yunfan and Ryder, Robin and Thouzeau, Valentin and Greenhill, Simon
J. and List, Johann-Mattis (2019): Dated language phylogenies shed light on the ancestry of Sino-Tibetan. Proceedings
of the National Academy of Science of the United States of America 116. 10317-10322.
https://doi.org/10.1073/pnas.1817972116

Tjuka, Annika and Forkel, Robert and Rzymski, Christoph and List, Johann-Mattis (2025): Advancing the Database of
Cross-Linguistic Colexifications with New Workflows and Data. arXiv 2503.11377. 1-14. [Preprint, under review, not
peer-reviewed] https://doi.org/10.48550/arXiv.2503.11377

Supplementary Material

Code and data are curated on GitHub (https:/github.com/lexibank/leecaijia, Version 1.3) and archived with Zenodo
(https://doi.org/10.5281/zenodo.15687121).

Funding Information

This project has received funding from the European Research Council (ERC) under the European Union's Horizon Europe
research and innovation programme (Grant agreement No. 101044282). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

59

https://edictor.org/
https://doi.org/10.1073/pnas.1817972116
https://doi.org/10.48550/arXiv.2503.11377
https://github.com/lexibank/leecaijia
https://doi.org/10.5281/zenodo.15687121
https://doi.org/10.3030/101044282

	Making a Lexibank Dataset from Lee’s “Phonological Features of Caijia” from 2023

	1 Introduction

	2 Initial Preparations

	3 Converting the Data to CLDF

	3.1 Initial Preparations

	3.2 Installing Packages

	3.3 Preparing the Major Script for CLDF Conversion

	4 Running the CLDF Conversion

	5 Conclusion

	References

